
These materials adapted by Amelia McNamara from
the RStudio CC BY-SA materials Introduction to R
(2014) and Master the Tidyverse (2017).

https://creativecommons.org/licenses/by-sa/2.0/
https://github.com/rstudio-education/master-the-tidyverse

Amelia McNamara
Visiting Assistant Professor of Statistical and Data Sciences

Smith College
June 2018

Introduction to R & RStudio:

deck 01: Getting started

Amelia
HELLO

my name is

@AmeliaMN

https://twitter.com/AmeliaMN

R: a computer
programming language

R: a computer
programming language

1. Descends from S, Bell Labs

2. Evolved in university environment

3. Full language

4. ...but can be used as a simple

application

5. Designed for use with data

R: a computer
programming language

From R for Data Science by Hadley Wickham and Garrett Grolemund.

R: designed for data

> bechdel

A tibble: 1,794 x 15

 year imdb title test clean_test binary budget domgross intgross

 <int> <chr> <chr> <chr> <fctr> <chr> <int> <dbl> <dbl>

 1 2009 tt1003034 Perrier's Bounty nowomen nowomen FAIL 6600000 828 828

 2 2008 tt1226681 Pontypool nowomen-disagree nowomen FAIL 1500000 3865 31916

 3 2012 tt1874789 Supporting Characters men men FAIL 60000 4917 4917

 4 2007 tt0861739 Tropa de Elite ok-disagree ok PASS 6537890 8744 14319195

 5 2007 tt0964587 St. Trinian's ok ok PASS 11400000 15000 22446568

 6 2011 tt1535616 The Divide ok ok PASS 3000000 18000 18000

 7 1996 tt0115591 August dubious dubious FAIL 3400000 12636 12636

 8 2006 tt0783238 The Dead Girl ok ok PASS 3300000 19875 19875

 9 2005 tt0342272 Dear Wendy notalk notalk FAIL 8000000 23106 446438

10 2011 tt1788391 Kill List dubious dubious FAIL 800000 29063 462206

... with 1,784 more rows, and 6 more variables: code <chr>, budget_2013 <int>, domgross_2013 <dbl>,

intgross_2013 <dbl>, period_code <int>, decade_code <int>

> bechdel %>% skim(domgross_2013)

Skim summary statistics

 n obs: 1794

 n variables: 15

Variable type: numeric

 variable missing complete n mean sd p25 median p75 hist

 domgross_2013 18 1776 1794 9.5e+07 1.3e+08 2.1e+07 5.6e+07 1.2e+08 ▇▁▁▁▁▁▁▁

> bechdel %>% skim(clean_test)

Skim summary statistics

 n obs: 1794

 n variables: 15

Variable type: factor

 variable missing complete n n_unique top_counts ordered

 clean_test 0 1794 1794 5 ok: 803, not: 514, men: 194, dub: 142 FALSE

> gf_point(domgross_2013~budget_2013, data=bechdel, color = ~ binary)

Call:
lm(formula = domgross_2013 ~ budget_2013, data = bechdel)

Residuals:
 Min 1Q Median 3Q Max
-256686756 -47529500 -27186696 15143559 1690886212

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.615e+07 3.782e+06 9.559 <2e-16 ***
budget_2013 1.056e+00 4.823e-02 21.896 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 111800000 on 1774 degrees of freedom
 (18 observations deleted due to missingness)
Multiple R-squared: 0.2128, Adjusted R-squared: 0.2123
F-statistic: 479.4 on 1 and 1774 DF, p-value: < 2.2e-16

> lm(domgross_2013~budget_2013, data=bechdel)

https://shiny.rstudio.com/gallery/movie-explorer.html

https://shiny.rstudio.com/gallery/movie-explorer.html

http://www.intro-stats.com/

http://www.intro-stats.com/
http://livepage.apple.com/

1. like Microsoft Word, Excel, etc.

2. built to help you write R code, run R

code, and analyze data with R

3. text editor, version control,

keyboard shortcuts, debugging
tools, and much more

RStudio: a software program

Your turn
It’s time to log in to RStudio, if you haven’t already.
Go to http://bit.ly/statPREP-cloud

Make an account

Click Save a Copy

RStudio http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio

The console gives
you a place to
execute commands
written in R

http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

RStudio: ways to use

We’re using RStudio Cloud, which allows you
to log in through a web browser and do your
work there.
But, there are other versions of RStudio.

RStudio: server edition

RStudio: desktop edition

Transferability
Everything you learn here will work in any version
of RStudio

It will even work in the basic console version of R

Tips
Learning things can be frustrating!

Ask questions!

Practice!

Seriously: practice!

And practice consciously: make a prediction,
then test it, then reflect.

RStudio

Getting started
http://bit.ly/statPREP-cloud

http://bit.ly/statPREP-cloud

The console gives
you a place to
execute commands
written in R

Type commands on
the line that begins
with a > sign
(known as the
prompt)

When you hit enter,
RStudio will run
your command and
display any output
below it

Output

Output
New prompt

[1]
R displays an index
next to the output.

Just ignore this.

Somewhat helpful
when R returns more
than one value in the
output.

5 + 5
10

4 - 1
3

1 * 2
2

4 ^ 2
16

R
R is like a fancy calculator
on your computer

a <- 1
b <- 2

a + b
3

A <- 3

a + b - A
0

R
It can do algebra

It cares about
capitalization

round(3.1415)
3

factorial(3)
6

sqrt(9)
3

R
And it has functions that let
you do more sophisticated
manipulations

3! = 3 x 2 x 1

square root

factorial(3)
6

sqrt(9)
3

R
Most of the cool stuff in R
comes from functions. Like
f(x) (“f of x”) functions in R
have names, parentheses,
and arguments

factorial of 3

square root of 9

+ prompt
If your prompt turns
into a "+", R thinks
you haven't finished
your previous
command.

Either finish the
command, or press
escape.

+ prompt
If your prompt turns
into a "+", R thinks
you haven't finished
your previous
command.

Either finish the
command, or press
escape.

Your turn
Open RStudio and try the following
tasks:

1. Pick a number and add 2 to it

2. Multiply the result by 3

3. Subtract 6 from the result of step 2

4. Divide the result of step 3 by 3

10 + 2
12

12 * 3
36

36 - 6
30

30 / 3
10

Workflow

RMarkdown
It is easier to compose your code in an
RMarkdown document than in the
command line, and RMarkdown allows you
to keep text with your code.

We’ll begin with a document I have started
for you, called 01-Intro.Rmd

R Notebook

Notice that the Console has automatically
minimized itself, to give you room to work
in your document. From here out, we'll be
working almost exclusively in documents,
but all the code we write would work in the

Console as well.

Do what the text
instructs, and run a line
of the code. Notice how
results display
immediately below the
chunk, just like they did
in the Console.

One way to run
code chunks

Output for
all code in

chunk

Output for the one
line you've run

You can also run just one line
of code, by placing your
cursor on the line and hitting
Command Enter

R objects

the_answer <- 42

You can save information as an R object with
the greater than sign followed by a minus, e.g,
an arrow: <-

name of new
object

You can save information as an R object with
the greater than sign followed by a minus, e.g,
an arrow: <-

the_answer <- 42

You can save information as an R object with
the greater than sign followed by a minus, e.g,
an arrow: <-

the_answer <- 42

assignment
operator,

"gets"

You can save information as an R object with
the greater than sign followed by a minus, e.g,
an arrow: <-

the_answer <- 42

information
to store in the

object

When you create an R object, you'll see it appear
in your environment pane

What objects are in your
environment right now?

more_pi <- round(3.1415) + 1
more_pi
4

factorial(more_pi)
24

Common R workflow
Save output of one function as an R object
to use in a second function.

a
b
FOO
my_var
.day

Object names
Object names cannot begin with numbers

They cannot contain spaces

It is wise to avoid names already in use

Informative names are better than generic ones

2nd
mean
data
!bad

eh
CDC_data

finalModel

more_pi

withoutOver64

yeah!NO

cdc_data
finalmodel
sum

Capitalization matters

R will treat each of these as a different object

CDC_data
finalModel
SUM

R packages

function1()
function2()
function3()
function4()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

function1()
function2()
function3()
function4()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

function5()
function6()
function7()
function8()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

function9()
functionA()
functionB()
functionC()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

functionD()
functionE()
functionF()
functionG()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

Base R

function1()
function2()
function3()
function4()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

function5()
function6()
function7()
function8()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

function9()
functionA()
functionB()
functionC()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

functionD()
functionE()
functionF()
functionG()

help help help

p p p p10071007100710071009100910091009
p p p

p p p

Base R R Packages

CC by RStudio

Using packages

install.packages("foo")

Downloads files to computer

1
library("foo")

Loads package

2

1 x per computer 1 x per R Session

I’ve done this
for you for this

workshop

Using packages

1. 2.
install.packages("ggplot2") library(ggplot2)

The tidyverse

The tidyverse is an opinionated collection of R
packages designed for data science.

© 2018 Amelia McNamara

SUMMARY STATISTICS:
one continuous variable:
mosaic::mean(~mpg, data=mtcars)

one categorical variable:
mosaic::tally(~cyl, data=mtcars)

two categorical variables:
mosaic::tally(cyl~am, data=mtcars)

one continuous, one categorical:
mosaic::mean(mpg~cyl, data=mtcars)

SUMMARY STATISTICS:

one continuous variable:
mean(mtcars$mpg)

one categorical variable:
table(mtcars$cyl)

two categorical variables:
table(mtcars$cyl, mtcars$am)

one continuous, one categorical:
mean(mtcars$mpg[mtcars$cyl==4])
mean(mtcars$mpg[mtcars$cyl==6])
mean(mtcars$mpg[mtcars$cyl==8])

PLOTTING:
one continuous variable:

hist(mtcars$disp)

boxplot(mtcars$disp)

one categorical variable:
barplot(table(mtcars$cyl))

two continuous variables:
plot(mtcars$disp, mtcars$mpg)

two categorical variables:
mosaicplot(table(mtcars$am, mtcars$cyl))

one continuous, one categorical:
histogram(mtcars$disp[mtcars$cyl==4])
histogram(mtcars$disp[mtcars$cyl==6])
histogram(mtcars$disp[mtcars$cyl==8])

boxplot(mtcars$disp[mtcars$cyl==4])
boxplot(mtcars$disp[mtcars$cyl==6])
boxplot(mtcars$disp[mtcars$cyl==8])

WRANGLING:
subsetting:

mtcars[mtcars$mpg>30,]

making a new variable:
mtcars$efficient[mtcars$mpg>30] <- TRUE
mtcars$efficient[mtcars$mpg<30] <- FALSE

R Syntax Comparison : : CHEAT SHEET

RStudio® is a trademark of RStudio, Inc. • CC BY Amelia McNamara • amcnamara@smith.edu • @AmeliaMN • science.smith.edu/~amcnamara/ • Updated: 2018-01

Dollar sign syntax

tilde

Formula syntax Tidyverse syntax
goal(data$x, data$y) goal(y~x|z, data=data, group=w) data %>% goal(x)

PLOTTING:
one continuous variable:
lattice::histogram(~disp, data=mtcars)

lattice::bwplot(~disp, data=mtcars)

one categorical variable:
mosaic::bargraph(~cyl, data=mtcars)

two continuous variables:
lattice::xyplot(mpg~disp, data=mtcars)

two categorical variables:
mosaic::bargraph(~am, data=mtcars, group=cyl)

one continuous, one categorical:
lattice::histogram(~disp|cyl, data=mtcars)

lattice::bwplot(cyl~disp, data=mtcars)

SUMMARY STATISTICS:
one continuous variable:

mtcars %>% dplyr::summarize(mean(mpg))

one categorical variable:
mtcars %>% dplyr::group_by(cyl) %>%
dplyr::summarize(n())

two categorical variables:
mtcars %>% dplyr::group_by(cyl, am) %>%
dplyr::summarize(n())

one continuous, one categorical:
mtcars %>% dplyr::group_by(cyl) %>%

dplyr::summarize(mean(mpg))

PLOTTING:
one continuous variable:
ggplot2::qplot(x=mpg, data=mtcars, geom = "histogram")

ggplot2::qplot(y=disp, x=1, data=mtcars, geom="boxplot")

one categorical variable:
ggplot2::qplot(x=cyl, data=mtcars, geom="bar")

two continuous variables:
ggplot2::qplot(x=disp, y=mpg, data=mtcars, geom="point")

two categorical variables:
ggplot2::qplot(x=factor(cyl), data=mtcars, geom="bar") +

facet_grid(.~am)

one continuous, one categorical:
ggplot2::qplot(x=disp, data=mtcars, geom = "histogram") +

facet_grid(.~cyl)

ggplot2::qplot(y=disp, x=factor(cyl), data=mtcars,
geom="boxplot")

WRANGLING:
subsetting:
mtcars %>% dplyr::filter(mpg>30)

making a new variable:
mtcars <- mtcars %>%
dplyr::mutate(efficient = if_else(mpg>30, TRUE, FALSE))

the pipe

The variety of R syntaxes give
you many ways to “say” the
same thing

read across the cheatsheet to see how different
syntaxes approach the same problem

I'v
e g

ive
n y

ou
 a

co
py

 o
f t

his
 ch

ea
tsh

ee
t i

n y
ou

r fi
les

