These materials adapted by Amelia McNamara from the RStudio <u>CC BY-SA</u> materials Introduction to R (2014) and <u>Master the Tidyverse</u> (2017).

Introduction to R & RStudio:

deck 01: Getting started

Amelia McNamara

Visiting Assistant Professor of Statistical and Data Sciences Smith College

June 2018

HELLO

my name is

Amelia

@AmeliaMN

R: a computer programming language

R: a computer programming language

R: a computer programming language

- 1. Descends from S, Bell Labs
- 2. Evolved in university environment
- 3. Full language
- 4. ...but can be used as a simple application
- 5. Designed for use with data

R: designed for data

Program

From R for Data Science by Hadley Wickham and Garrett Grolemund.

> bechdel

A tibble: 1,794 x 15

	year	imdb	title	test	clean_test	binary	budget	domgross	intgross
	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<fctr></fctr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	2009	tt1003034	Perrier's Bounty	nowomen	nowomen	FAIL	6600000	828	828
2	2008	tt1226681	Pontypool	nowomen-disagree	nowomen	FAIL	1500000	3865	31916
3	2012	tt1874789	Supporting Characters	men	men	FAIL	60000	4917	4917
4	2007	tt0861739	Tropa de Elite	ok-disagree	ok	PASS	6537890	8744	14319195
5	2007	tt0964587	St. Trinian's	ok	ok	PASS	11400000	15000	22446568
6	2011	tt1535616	The Divide	ok	ok	PASS	3000000	18000	18000
7	1996	tt0115591	August	dubious	dubious	FAIL	3400000	12636	12636
8	2006	tt0783238	The Dead Girl	ok	ok	PASS	3300000	19875	19875
9	2005	tt0342272	Dear Wendy	notalk	notalk	FAIL	8000000	23106	446438
10	2011	tt1788391	Kill List	dubious	dubious	FAIL	800000	29063	462206

^{# ...} with 1,784 more rows, and 6 more variables: code <chr>, budget_2013 <int>, domgross_2013 <dbl>,

[#] intgross_2013 <dbl>, period_code <int>, decade_code <int>

> bechdel %>% skim(domgross_2013)

Skim summary statistics

n obs: 1794

n variables: 15

Variable type: numeric

variable missing complete n mean sd p25 median p75 hist

domgross_2013 18 1776 1794 9.5e+07 1.3e+08 2.1e+07 5.6e+07 1.2e+08 ■

> bechdel %>% skim(clean_test)

Skim summary statistics

n obs: 1794

n variables: 15

Variable type: factor

variable missing complete n n_unique top_counts ordered

clean_test 0 1794 1794 5 ok: 803, not: 514, men: 194, dub: 142 FALSE

> gf_point(domgross_2013 \sim budget_2013, data=bechdel, color = \sim binary)


```
> lm(domgross_2013~budget_2013, data=bechdel)
Call:
lm(formula = domgross_2013 \sim budget_2013, data = bechdel)
Residuals:
                         Median
       Min
                  10
                                        30
                                                  Max
-256686756 -47529500 -27186696 15143559 1690886212
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.615e+07 3.782e+06 9.559 <2e-16 ***
budget_2013 1.056e+00 4.823e-02 21.896 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 111800000 on 1774 degrees of freedom
  (18 observations deleted due to missingness)
Multiple R-squared: 0.2128, Adjusted R-squared: 0.2123
F-statistic: 479.4 on 1 and 1774 DF, p-value: < 2.2e-16
```


https://shiny.rstudio.com/gallery/movie-explorer.html

http://www.intro-stats.com/

RStudio: a software program

- 1. like Microsoft Word, Excel, etc.
- 2. built to help you write R code, run R code, and analyze data with R
- 3. text editor, version control, keyboard shortcuts, debugging tools, and much more

Your turn

It's time to log in to RStudio, if you haven't already. Go to http://bit.ly/statPREP-cloud

Make an account

Click Save a Copy

RStudio: ways to use

We're using RStudio Cloud, which allows you to log in through a web browser and do your work there.

But, there are other versions of RStudio.

RStudio: server edition

RStudio: desktop edition

Transferability

Everything you learn here will work in any version of RStudio

It will even work in the basic console version of R

Tips

Learning things can be frustrating!

Ask questions!

Practice!

Seriously: practice!

And practice consciously: make a prediction, then test it, then reflect.

Btudio

Getting started

The console gives you a place to execute commands written in R

Type commands on the line that begins with a > sign (known as the prompt)

Output

When you hit enter, RStudio will run your command and display any output below it

[1]

R displays an index next to the output.

Just ignore this.

Somewhat helpful when R returns more than one value in the output.

R is like a fancy calculator on your computer

5 + 5

10

4 - 1

#3

1 * 2

#2

4 ^ 2

16

It can do algebra

$$a + b$$

It cares about

And it has functions that let you do more sophisticated manipulations

round(3.1415)

#3

factorial(3)

#6

sqrt(9)

#3

$$3! = 3 \times 2 \times 1$$

square root

Most of the cool stuff in R comes from functions. Like f(x) ("f of x") functions in R have names, parentheses, and arguments

```
factorial of 3

factorial(3)

# 6

square root of 9

sqrt(9)

# 3
```

+ prompt

If your prompt turns into a "+", R thinks you haven't finished your previous command.

Either finish the command, or press escape.

+ prompt

If your prompt turns into a "+", R thinks you haven't finished your previous command.

Either finish the command, or press escape.

Your turn

Open RStudio and try the following tasks:

- 1. Pick a number and add 2 to it
- 2. Multiply the result by 3
- 3. Subtract 6 from the result of step 2
- 4. Divide the result of step 3 by 3

10 + 2 # 12

12 * 3

36

36 - 6

30

30 / 3

10

Workflow

RMarkdown

It is easier to compose your code in an RMarkdown document than in the command line, and RMarkdown allows you to keep text with your code.

We'll begin with a document I have started for you, called 01-Intro.Rmd

Do what the text instructs, and run a line of the code. Notice how results display immediately below the chunk, just like they did in the Console.

nressing *Cmd+Shift+Enter*

Packages Help Plots 💴 New Folder 🛛 😂 Delete 📑 R Mome > Dropbox > Intro_to Name .Rhistory 04-Syntax.nb.html 04-Syntax.Rmd 03-DataTypes.nb.html 03-DataTypes.Rmd 02-Visualization.Rmd 01-Intro.Rmd solutions

Plots Packages Help 💴 New Folder 🔑 Delete 🔑 R Home > Dropbox > Intro_to Name .Rhistory 8 04-Syntax.nb.html 04-Syntax.Rmd ® 03-DataTypes.nb.html 03-DataTypes.Rmd 02-Visualization.Rmd 01–Intro.Rmd solutions

Global Environment *

Robjects

the_answer <- 42

name of new object

the answer <- 42

assignment operator, "gets"

the_answer <- 42

> information to store in the object

the_answer <- 42

When you create an R object, you'll see it appear in your environment pane

Common R workflow

Save output of one function as an R object to use in a second function.

```
more_pi <- round(3.1415) + 1
more_pi
# 4

factorial(more_pi)
# 24</pre>
```

Object names

Object names cannot begin with numbers

They cannot contain spaces

It is wise to avoid names already in use

Informative names are better than generic ones

Capitalization matters

R will treat each of these as a different object

finalmodel finalModel

sum SUM

Rpackages

function1()
function2()
function3()
function4()

Base R

Using packages

I've done this for you for this workshop

The tidyverse

R Syntax Comparison:: CHEAT SHEET

```
Dollar sign syntax
                                             Formula syntax
                                                                                              Tidyverse syntax
         goal(data$x, data$y)
                                                 goal(y~x|z, data=data, group=w)
                                                we given you a copy of this cheat sheet in your files
                                                                                              SUMMARY STATISTI
SUMMARY STATISTICS:
                                              SUMMARY STATISTICS:
                                              one continuous variable:
one continuous variable:
                                              mosaic::mean(~mpg, data=mtcars)
   mean(mtcars$mpg)
                                              one categorical variable:
one categorical variable:
                                              mosaic::tally(~cyl, data=mtcars)
   table(mtcars$cyl)
two categorical variables:
                                              two categorical variables:
                                              mosaic::tally(cyl~am, data=mtcars)
   table(mtcars$cyl, mtcars$am)
                                                                                                                            (cyl, am) %>%
                                              one continuous, one categorical:
one continuous, one categorical:
                                              mosaic::mean(mpg~cyl, data=mtcars)
   mean(mtcars$mpg[mtcars$cyl==4])
   mean(mtcars$mpg[mtcars$cyl==6])
                                                                                                                     group_by(cyl) %>%
   mean(mtcars$mpg[mtcars$cyl==8])
                                              PLOTTING:
PLOTTING:
                                              one continuous variable:
one continuous variable:
   hist(mtcars$disp)
                                              lattice::histogram(~disp,
                                                                                                          lot(x=mpg, data=mtcars, geom = "histogram")
   boxplot(mtcars$disp)
                                              lattice::bwplot(~disp_
                                                                                                        :qplot(y=disp, x=1, data=mtcars, geom="boxplot")
one categorical variable:
                                              one categorical variable
   barplot(table(mtcars$cyl))
                                              mosaic::bargraph/
                                                                                                 plot2::qplot(x=cyl, data=mtcars, geom="bar")
two continuous variables:
                                              two continuous
   plot(mtcars$disp, mtcars$mpg)
                                              lattice::x
                                                                                              ggplot2::qplot(x=disp, y=mpg, data=mtcars, geom="point")
two categorical variables:
                                              two cate
                                                                                   roup=cyl) ggplot2::qplot(x=factor(cyl), data=mtcars, geom="bar") +
   mosaicplot(table(mtcars$am, mtcars$cyl)) mosa
one continuous, one categorical:
   histogram(mtcars$disp[mtcars$cyl==4])
   histogram(mtcars$disp[mtcars$cyl==6])
                                                                                              ggplot2::qplot(x=disp, data=mtcars, geom = "histogram") +
   histogram(mtcars$disp[mtcars$cyl==8]
   boxplot(mtcars$disp[mtcars$cyl==/
                                                                                              ggplot2::qplot(y=disp, x=factor(cyl), data=mtcars,
   boxplot(mtcars$disp[mtcars$cylz
                                                                                                              geom="boxplot")
                                                                   R syntaxes give
   boxplot(mtcars$disp[mtcars$cy
                                                              ways to "say" the
WRANGLING:
                                                                                              WRANGLING:
                                                                                              subsettina:
subsetting:
                                                                                              mtcars %>% dplyr::filter(mpg>30)
  mtcars[mtcars$mpg>30]
making a new variable:
                                                                                              making a new variable:
```

d across the cheatsheet to see how different

syntaxes approach the same problem

mtcars\$efficien

dplyr::mutate(efficient = if_else(mpg>30, TRUE, FALSE))

mtcars <- mtcars %>%

the pipe